Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
Apr 16, 2025
Abstract:Feature matching across video streams remains a cornerstone challenge in computer vision. Increasingly, robust multimodal matching has garnered interest in robotics, surveillance, remote sensing, and medical imaging. While traditional rely on detecting and matching spatial features, they break down when faced with noisy, misaligned, or cross-modal data. Recent deep learning methods have improved robustness through learned representations, but remain constrained by their dependence on extensive training data and computational demands. We present Flow Intelligence, a paradigm-shifting approach that moves beyond spatial features by focusing on temporal motion patterns exclusively. Instead of detecting traditional keypoints, our method extracts motion signatures from pixel blocks across consecutive frames and extract temporal motion signatures between videos. These motion-based descriptors achieve natural invariance to translation, rotation, and scale variations while remaining robust across different imaging modalities. This novel approach also requires no pretraining data, eliminates the need for spatial feature detection, enables cross-modal matching using only temporal motion, and it outperforms existing methods in challenging scenarios where traditional approaches fail. By leveraging motion rather than appearance, Flow Intelligence enables robust, real-time video feature matching in diverse environments.
Via

Apr 15, 2025
Abstract:Earth observation satellites like Sentinel-1 (S1) and Sentinel-2 (S2) provide complementary remote sensing (RS) data, but S2 images are often unavailable due to cloud cover or data gaps. To address this, we propose a diffusion model (DM)-based approach for SAR-to-RGB translation, generating synthetic optical images from SAR inputs. We explore three different setups: two using Standard Diffusion, which reconstruct S2 images by adding and removing noise (one without and one with class conditioning), and one using Cold Diffusion, which blends S2 with S1 before removing the SAR signal. We evaluate the generated images in downstream tasks, including land cover classification and cloud removal. While generated images may not perfectly replicate real S2 data, they still provide valuable information. Our results show that class conditioning improves classification accuracy, while cloud removal performance remains competitive despite our approach not being optimized for it. Interestingly, despite exhibiting lower perceptual quality, the Cold Diffusion setup performs well in land cover classification, suggesting that traditional quantitative evaluation metrics may not fully reflect the practical utility of generated images. Our findings highlight the potential of DMs for SAR-to-RGB translation in RS applications where RGB images are missing.
* 10 pages, 3 figures
Via

Apr 16, 2025
Abstract:The reconstruction of 3D objects from brain signals has gained significant attention in brain-computer interface (BCI) research. Current research predominantly utilizes functional magnetic resonance imaging (fMRI) for 3D reconstruction tasks due to its excellent spatial resolution. Nevertheless, the clinical utility of fMRI is limited by its prohibitive costs and inability to support real-time operations. In comparison, electroencephalography (EEG) presents distinct advantages as an affordable, non-invasive, and mobile solution for real-time brain-computer interaction systems. While recent advances in deep learning have enabled remarkable progress in image generation from neural data, decoding EEG signals into structured 3D representations remains largely unexplored. In this paper, we propose a novel framework that translates EEG recordings into 3D object reconstructions by leveraging neural decoding techniques and generative models. Our approach involves training an EEG encoder to extract spatiotemporal visual features, fine-tuning a large language model to interpret these features into descriptive multimodal outputs, and leveraging generative 3D Gaussians with layout-guided control to synthesize the final 3D structures. Experiments demonstrate that our model captures salient geometric and semantic features, paving the way for applications in brain-computer interfaces (BCIs), virtual reality, and neuroprosthetics.Our code is available in https://github.com/sddwwww/Mind2Matter.
Via

Apr 13, 2025
Abstract:Multimodal medical images play a crucial role in the precise and comprehensive clinical diagnosis. Diffusion model is a powerful strategy to synthesize the required medical images. However, existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information and the weakening of low-frequency information. Thus, we propose a novel method based on dynamic frequency balance and knowledge guidance. Specifically, we first extract the low-frequency and high-frequency components by decomposing the critical features of the model using wavelet transform. Then, a dynamic frequency balance module is designed to adaptively adjust frequency for enhancing global low-frequency features and effective high-frequency details as well as suppressing high-frequency noise. To further overcome the challenges posed by the large differences between different medical modalities, we construct a knowledge-guided mechanism that fuses the prior clinical knowledge from a visual language model with visual features, to facilitate the generation of accurate anatomical structures. Experimental evaluations on multiple datasets show the proposed method achieves significant improvements in qualitative and quantitative assessments, verifying its effectiveness and superiority.
* Medical image translation, Diffusion model, 16 pages
Via

Apr 13, 2025
Abstract:LLM jailbreaks are a widespread safety challenge. Given this problem has not yet been tractable, we suggest targeting a key failure mechanism: the failure of safety to generalize across semantically equivalent inputs. We further focus the target by requiring desirable tractability properties of attacks to study: explainability, transferability between models, and transferability between goals. We perform red-teaming within this framework by uncovering new vulnerabilities to multi-turn, multi-image, and translation-based attacks. These attacks are semantically equivalent by our design to their single-turn, single-image, or untranslated counterparts, enabling systematic comparisons; we show that the different structures yield different safety outcomes. We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment. This guardrail significantly improves refusal of harmful inputs, without over-refusing benign ones. Thus, by framing this intermediate challenge - more tractable than universal defenses but essential for long-term safety - we highlight a critical milestone for AI safety research.
Via

Apr 14, 2025
Abstract:This paper introduces the class of grey-scale image stack operators as those that (a) map binary-images into binary-images and (b) commute in average with cross-sectioning. We show that stack operators are 1-Lipchitz extensions of set operators which can be represented by applying a characteristic set operator to the cross-sections of the image and summing. In particular, they are a generalisation of stack filters, for which the characteristic set operators are increasing. Our main result is that stack operators inherit lattice properties of the characteristic set operators. We focus on the case of translation-invariant and locally defined stack operators and show the main result by deducing the characteristic function, kernel, and basis representation of stack operators. The results of this paper have implications on the design of image operators, since imply that to solve some grey-scale image processing problems it is enough to design an operator for performing the desired transformation on binary images, and then considering its extension given by a stack operator. We leave many topics for future research regarding the machine learning of stack operators and the characterisation of the image processing problems that can be solved by them.
Via

Apr 14, 2025
Abstract:Text-to-image generation has seen groundbreaking advancements with diffusion models, enabling high-fidelity synthesis and precise image editing through cross-attention manipulation. Recently, autoregressive (AR) models have re-emerged as powerful alternatives, leveraging next-token generation to match diffusion models. However, existing editing techniques designed for diffusion models fail to translate directly to AR models due to fundamental differences in structural control. Specifically, AR models suffer from spatial poverty of attention maps and sequential accumulation of structural errors during image editing, which disrupt object layouts and global consistency. In this work, we introduce Implicit Structure Locking (ISLock), the first training-free editing strategy for AR visual models. Rather than relying on explicit attention manipulation or fine-tuning, ISLock preserves structural blueprints by dynamically aligning self-attention patterns with reference images through the Anchor Token Matching (ATM) protocol. By implicitly enforcing structural consistency in latent space, our method ISLock enables structure-aware editing while maintaining generative autonomy. Extensive experiments demonstrate that ISLock achieves high-quality, structure-consistent edits without additional training and is superior or comparable to conventional editing techniques. Our findings pioneer the way for efficient and flexible AR-based image editing, further bridging the performance gap between diffusion and autoregressive generative models. The code will be publicly available at https://github.com/hutaiHang/ATM
Via

Apr 14, 2025
Abstract:In remote sensing, multi-modal data from various sensors capturing the same scene offers rich opportunities, but learning a unified representation across these modalities remains a significant challenge. Traditional methods have often been limited to single or dual-modality approaches. In this paper, we introduce COP-GEN-Beta, a generative diffusion model trained on optical, radar, and elevation data from the Major TOM dataset. What sets COP-GEN-Beta apart is its ability to map any subset of modalities to any other, enabling zero-shot modality translation after training. This is achieved through a sequence-based diffusion transformer, where each modality is controlled by its own timestep embedding. We extensively evaluate COP-GEN-Beta on thumbnail images from the Major TOM dataset, demonstrating its effectiveness in generating high-quality samples. Qualitative and quantitative evaluations validate the model's performance, highlighting its potential as a powerful pre-trained model for future remote sensing tasks.
* Accepted at CVPR 2025 Workshop MORSE
Via

Apr 10, 2025
Abstract:Current autonomous driving algorithms heavily rely on the visible spectrum, which is prone to performance degradation in adverse conditions like fog, rain, snow, glare, and high contrast. Although other spectral bands like near-infrared (NIR) and long-wave infrared (LWIR) can enhance vision perception in such situations, they have limitations and lack large-scale datasets and benchmarks. Short-wave infrared (SWIR) imaging offers several advantages over NIR and LWIR. However, no publicly available large-scale datasets currently incorporate SWIR data for autonomous driving. To address this gap, we introduce the RGB and SWIR Multispectral Driving (RASMD) dataset, which comprises 100,000 synchronized and spatially aligned RGB-SWIR image pairs collected across diverse locations, lighting, and weather conditions. In addition, we provide a subset for RGB-SWIR translation and object detection annotations for a subset of challenging traffic scenarios to demonstrate the utility of SWIR imaging through experiments on both object detection and RGB-to-SWIR image translation. Our experiments show that combining RGB and SWIR data in an ensemble framework significantly improves detection accuracy compared to RGB-only approaches, particularly in conditions where visible-spectrum sensors struggle. We anticipate that the RASMD dataset will advance research in multispectral imaging for autonomous driving and robust perception systems.
Via

Apr 10, 2025
Abstract:Positron Emission Tomography (PET) imaging requires accurate attenuation correction (AC) to account for photon loss due to tissue density variations. In PET/MR systems, computed tomography (CT), which offers a straightforward estimation of AC is not available. This study presents a deep learning approach to generate synthetic CT (sCT) images directly from Time-of-Flight (TOF) non-attenuation corrected (NAC) PET images, enhancing AC for PET/MR. We first evaluated models pre-trained on large-scale natural image datasets for a CT-to-CT reconstruction task, finding that the pre-trained model outperformed those trained solely on medical datasets. The pre-trained model was then fine-tuned using an institutional dataset of 35 TOF NAC PET and CT volume pairs, achieving the lowest mean absolute error (MAE) of 74.49 HU and highest peak signal-to-noise ratio (PSNR) of 28.66 dB within the body contour region. Visual assessments demonstrated improved reconstruction of both bone and soft tissue structures from TOF NAC PET images. This work highlights the effectiveness of using pre-trained deep learning models for medical image translation tasks. Future work will assess the impact of sCT on PET attenuation correction and explore additional neural network architectures and datasets to further enhance performance and practical applications in PET imaging.
* 4 pages, 2 figures, ISBI 2025
Via
