Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
Dec 24, 2024
Abstract:The in-image machine translation task involves translating text embedded within images, with the translated results presented in image format. While this task has numerous applications in various scenarios such as film poster translation and everyday scene image translation, existing methods frequently neglect the aspect of consistency throughout this process. We propose the need to uphold two types of consistency in this task: translation consistency and image generation consistency. The former entails incorporating image information during translation, while the latter involves maintaining consistency between the style of the text-image and the original image, ensuring background integrity. To address these consistency requirements, we introduce a novel two-stage framework named HCIIT (High-Consistency In-Image Translation) which involves text-image translation using a multimodal multilingual large language model in the first stage and image backfilling with a diffusion model in the second stage. Chain of thought learning is utilized in the first stage to enhance the model's ability to leverage image information during translation. Subsequently, a diffusion model trained for style-consistent text-image generation ensures uniformity in text style within images and preserves background details. A dataset comprising 400,000 style-consistent pseudo text-image pairs is curated for model training. Results obtained on both curated test sets and authentic image test sets validate the effectiveness of our framework in ensuring consistency and producing high-quality translated images.
Via
Dec 24, 2024
Abstract:International enterprises, organizations, or hospitals collect large amounts of multi-modal data stored in databases, text documents, images, and videos. While there has been recent progress in the separate fields of multi-modal data exploration as well as in database systems that automatically translate natural language questions to database query languages, the research challenge of querying database systems combined with other unstructured modalities such as images in natural language is widely unexplored. In this paper, we propose XMODE - a system that enables explainable, multi-modal data exploration in natural language. Our approach is based on the following research contributions: (1) Our system is inspired by a real-world use case that enables users to explore multi-modal information systems. (2) XMODE leverages a LLM-based agentic AI framework to decompose a natural language question into subtasks such as text-to-SQL generation and image analysis. (3) Experimental results on multi-modal datasets over relational data and images demonstrate that our system outperforms state-of-the-art multi-modal exploration systems, excelling not only in accuracy but also in various performance metrics such as query latency, API costs, planning efficiency, and explanation quality, thanks to the more effective utilization of the reasoning capabilities of LLMs.
Via
Dec 23, 2024
Abstract:This paper addresses a practical task: High-Resolution Image Anomaly Detection (HRIAD). In comparison to conventional image anomaly detection for low-resolution images, HRIAD imposes a heavier computational burden and necessitates superior global information capture capacity. To tackle HRIAD, this paper translates image anomaly detection into visual token prediction and proposes VarAD based on visual autoregressive modeling for token prediction. Specifically, VarAD first extracts multi-hierarchy and multi-directional visual token sequences, and then employs an advanced model, Mamba, for visual autoregressive modeling and token prediction. During the prediction process, VarAD effectively exploits information from all preceding tokens to predict the target token. Finally, the discrepancies between predicted tokens and original tokens are utilized to score anomalies. Comprehensive experiments on four publicly available datasets and a real-world button inspection dataset demonstrate that the proposed VarAD achieves superior high-resolution image anomaly detection performance while maintaining lightweight, rendering VarAD a viable solution for HRIAD. Code is available at \href{https://github.com/caoyunkang/VarAD}{\url{https://github.com/caoyunkang/VarAD}}.
* Accepted by IEEE TII
Via
Dec 22, 2024
Abstract:The advancements in deep learning, particularly the introduction of transformers, have been pivotal in enhancing various natural language processing (NLP) tasks. These include text-to-text applications such as machine translation, text classification, and text summarization, as well as data-to-text tasks like response generation and image-to-text tasks such as captioning. Transformer models are distinguished by their attention mechanisms, pretraining on general knowledge, and fine-tuning for downstream tasks. This has led to significant improvements, particularly in abstractive summarization, where sections of a source document are paraphrased to produce summaries that closely resemble human expression. The effectiveness of these models is assessed using diverse metrics, encompassing techniques like semantic overlap and factual correctness. This survey examines the state of the art in text summarization models, with a specific focus on the abstractive summarization approach. It reviews various datasets and evaluation metrics used to measure model performance. Additionally, it includes the results of test cases using abstractive summarization models to underscore the advantages and limitations of contemporary transformer-based models. The source codes and the data are available at https://github.com/gospelnnadi/Text-Summarization-SOTA-Experiment.
Via
Dec 20, 2024
Abstract:We present a simple but effective training-free approach for text-driven image-to-image translation based on a pretrained text-to-image diffusion model. Our goal is to generate an image that aligns with the target task while preserving the structure and background of a source image. To this end, we derive the representation guidance with a combination of two objectives: maximizing the similarity to the target prompt based on the CLIP score and minimizing the structural distance to the source latent variable. This guidance improves the fidelity of the generated target image to the given target prompt while maintaining the structure integrity of the source image. To incorporate the representation guidance component, we optimize the target latent variable of diffusion model's reverse process with the guidance. Experimental results demonstrate that our method achieves outstanding image-to-image translation performance on various tasks when combined with the pretrained Stable Diffusion model.
* WACV 2025
Via
Dec 20, 2024
Abstract:Nowcasting, the short-term prediction of weather, is essential for making timely and weather-dependent decisions. Specifically, precipitation nowcasting aims to predict precipitation at a local level within a 6-hour time frame. This task can be framed as a spatial-temporal sequence forecasting problem, where deep learning methods have been particularly effective. However, despite advancements in self-supervised learning, most successful methods for nowcasting remain fully supervised. Self-supervised learning is advantageous for pretraining models to learn representations without requiring extensive labeled data. In this work, we leverage the benefits of self-supervised learning and integrate it with spatial-temporal learning to develop a novel model, SpaT-SparK. SpaT-SparK comprises a CNN-based encoder-decoder structure pretrained with a masked image modeling (MIM) task and a translation network that captures temporal relationships among past and future precipitation maps in downstream tasks. We conducted experiments on the NL-50 dataset to evaluate the performance of SpaT-SparK. The results demonstrate that SpaT-SparK outperforms existing baseline supervised models, such as SmaAt-UNet, providing more accurate nowcasting predictions.
* 7 pages, 2 figures
Via
Dec 20, 2024
Abstract:Background: Recent advances in large language models highlight the need for high-quality multilingual medical datasets. While Japan leads globally in CT scanner deployment and utilization, the lack of large-scale Japanese radiology datasets has hindered the development of specialized language models for medical imaging analysis. Objective: To develop a comprehensive Japanese CT report dataset through machine translation and establish a specialized language model for structured finding classification. Additionally, to create a rigorously validated evaluation dataset through expert radiologist review. Methods: We translated the CT-RATE dataset (24,283 CT reports from 21,304 patients) into Japanese using GPT-4o mini. The training dataset consisted of 22,778 machine-translated reports, while the validation dataset included 150 radiologist-revised reports. We developed CT-BERT-JPN based on "tohoku-nlp/bert-base-japanese-v3" architecture for extracting 18 structured findings from Japanese radiology reports. Results: Translation metrics showed strong performance with BLEU scores of 0.731 and 0.690, and ROUGE scores ranging from 0.770 to 0.876 for Findings and from 0.748 to 0.857 for Impression sections. CT-BERT-JPN demonstrated superior performance compared to GPT-4o in 11 out of 18 conditions, including lymphadenopathy (+14.2%), interlobular septal thickening (+10.9%), and atelectasis (+7.4%). The model maintained F1 scores exceeding 0.95 in 14 out of 18 conditions and achieved perfect scores in four conditions. Conclusions: Our study establishes a robust Japanese CT report dataset and demonstrates the effectiveness of a specialized language model for structured finding classification. The hybrid approach of machine translation and expert validation enables the creation of large-scale medical datasets while maintaining high quality.
Via
Dec 21, 2024
Abstract:In a lot of scientific problems, there is the need to generate data through the running of an extensive number of experiments. Further, some tasks require constant human intervention. We consider the problem of crack detection in steel plates. The way in which this generally happens is through humans looking at an image of the thermogram generated by heating the plate and classifying whether it is cracked or not. There has been a rise in the use of Artificial Intelligence (AI) based methods which try to remove the requirement of a human from this loop by using algorithms such as Convolutional Neural Netowrks (CNN)s as a proxy for the detection process. The issue is that CNNs and other vision models are generally very data-hungry and require huge amounts of data before they can start performing well. This data generation process is not very easy and requires innovation in terms of mechanical and electronic design of the experimental setup. It further requires massive amount of time and energy, which is difficult in resource-constrained scenarios. We try to solve exactly this problem, by creating a synthetic data generation pipeline based on Finite Element Simulations. We employ data augmentation techniques on this data to further increase the volume and diversity of data generated. The working of this concept is shown via performing inference on fine-tuned vision models and we have also validated the results by checking if our approach translates to realistic experimental data. We show the conditions where this translation is successful and how we can go about achieving that.
* 9 pages, 14 figures
Via
Dec 18, 2024
Abstract:Beyond conventional paradigms of translating speech and text, recently, there has been interest in automated transcreation of images to facilitate localization of visual content across different cultures. Attempts to define this as a formal Machine Learning (ML) problem have been impeded by the lack of automatic evaluation mechanisms, with previous work relying solely on human evaluation. In this paper, we seek to close this gap by proposing a suite of automatic evaluation metrics inspired by machine translation (MT) metrics, categorized into: a) Object-based, b) Embedding-based, and c) VLM-based. Drawing on theories from translation studies and real-world transcreation practices, we identify three critical dimensions of image transcreation: cultural relevance, semantic equivalence and visual similarity, and design our metrics to evaluate systems along these axes. Our results show that proprietary VLMs best identify cultural relevance and semantic equivalence, while vision-encoder representations are adept at measuring visual similarity. Meta-evaluation across 7 countries shows our metrics agree strongly with human ratings, with average segment-level correlations ranging from 0.55-0.87. Finally, through a discussion of the merits and demerits of each metric, we offer a robust framework for automated image transcreation evaluation, grounded in both theoretical foundations and practical application. Our code can be found here: https://github.com/simran-khanuja/automatic-eval-transcreation
Via
Dec 18, 2024
Abstract:Biophysical modeling of brain tumors has emerged as a promising strategy for personalizing radiotherapy planning by estimating the otherwise hidden distribution of tumor cells within the brain. However, many existing state-of-the-art methods are computationally intensive, limiting their widespread translation into clinical practice. In this work, we propose an efficient and direct method that utilizes soft physical constraints to estimate the tumor cell concentration from preoperative MRI of brain tumor patients. Our approach optimizes a 3D tumor concentration field by simultaneously minimizing the difference between the observed MRI and a physically informed loss function. Compared to existing state-of-the-art techniques, our method significantly improves predicting tumor recurrence on two public datasets with a total of 192 patients while maintaining a clinically viable runtime of under one minute - a substantial reduction from the 30 minutes required by the current best approach. Furthermore, we showcase the generalizability of our framework by incorporating additional imaging information and physical constraints, highlighting its potential to translate to various medical diffusion phenomena with imperfect data.
Via