Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
What is this report: This is a scientific report, contributing with a detailed bibliography, a dataset which we will call now PFSeq for ''Photorealistic Fisheye Sequence'' and make available at https://doi.org/10. 57745/DYIVVU, and comprehensive experiments. This work should be considered as a draft, and has been done during my PhD thesis ''Construction of 3D models from fisheye video data-Application to the localisation in urban area'' in 2014 [Mor16]. These results have never been published. The aim was to find the best features detector and descriptor for fisheye images, in the context of selfcalibration, with cameras mounted on the top of a car and aiming at the zenith (to proceed then fisheye visual odometry and stereovision in urban scenes). We face a chicken and egg problem, because we can not take advantage of an accurate projection model for an optimal features detection and description, and we rightly need good features to perform the calibration (i.e. to compute the accurate projection model of the camera). What is not this report: It does not contribute with new features algorithm. It does not compare standard features algorithms to algorithms designed for omnidirectional images (unfortunately). It has not been peer-reviewed. Discussions have been translated and enhanced but the experiments have not been run again and the report has not been updated accordingly to the evolution of the state-of-the-art (read this as a 2014 report).
Synthetic Aperture Radar (SAR) and optical imagery provide complementary strengths that constitute the critical foundation for transcending single-modality constraints and facilitating cross-modal collaborative processing and intelligent interpretation. However, existing benchmark datasets often suffer from limitations such as single spatial resolution, insufficient data scale, and low alignment accuracy, making them inadequate for supporting the training and generalization of multi-scale foundation models. To address these challenges, we introduce SOMA-1M (SAR-Optical Multi-resolution Alignment), a pixel-level precisely aligned dataset containing over 1.3 million pairs of georeferenced images with a specification of 512 x 512 pixels. This dataset integrates imagery from Sentinel-1, PIESAT-1, Capella Space, and Google Earth, achieving global multi-scale coverage from 0.5 m to 10 m. It encompasses 12 typical land cover categories, effectively ensuring scene diversity and complexity. To address multimodal projection deformation and massive data registration, we designed a rigorous coarse-to-fine image matching framework ensuring pixel-level alignment. Based on this dataset, we established comprehensive evaluation benchmarks for four hierarchical vision tasks, including image matching, image fusion, SAR-assisted cloud removal, and cross-modal translation, involving over 30 mainstream algorithms. Experimental results demonstrate that supervised training on SOMA-1M significantly enhances performance across all tasks. Notably, multimodal remote sensing image (MRSI) matching performance achieves current state-of-the-art (SOTA) levels. SOMA-1M serves as a foundational resource for robust multimodal algorithms and remote sensing foundation models. The dataset will be released publicly at: https://github.com/PeihaoWu/SOMA-1M.
Recent advancements in 3D foundation models have enabled the generation of high-fidelity assets, yet precise 3D manipulation remains a significant challenge. Existing 3D editing frameworks often face a difficult trade-off between visual controllability, geometric consistency, and scalability. Specifically, optimization-based methods are prohibitively slow, multi-view 2D propagation techniques suffer from visual drift, and training-free latent manipulation methods are inherently bound by frozen priors and cannot directly benefit from scaling. In this work, we present ShapeUP, a scalable, image-conditioned 3D editing framework that formulates editing as a supervised latent-to-latent translation within a native 3D representation. This formulation allows ShapeUP to build on a pretrained 3D foundation model, leveraging its strong generative prior while adapting it to editing through supervised training. In practice, ShapeUP is trained on triplets consisting of a source 3D shape, an edited 2D image, and the corresponding edited 3D shape, and learns a direct mapping using a 3D Diffusion Transformer (DiT). This image-as-prompt approach enables fine-grained visual control over both local and global edits and achieves implicit, mask-free localization, while maintaining strict structural consistency with the original asset. Our extensive evaluations demonstrate that ShapeUP consistently outperforms current trained and training-free baselines in both identity preservation and edit fidelity, offering a robust and scalable paradigm for native 3D content creation.
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
Semantic segmentation of high-resolution remote-sensing imagery is critical for urban mapping and land-cover monitoring, yet training data typically exhibits severe long-tailed pixel imbalance. In the dataset LoveDA, this challenge is compounded by an explicit Urban/Rural split with distinct appearance and inconsistent class-frequency statistics across domains. We present a prompt-controlled diffusion augmentation framework that synthesizes paired label--image samples with explicit control of both domain and semantic composition. Stage~A uses a domain-aware, masked ratio-conditioned discrete diffusion model to generate layouts that satisfy user-specified class-ratio targets while respecting learned co-occurrence structure. Stage~B translates layouts into photorealistic, domain-consistent images using Stable Diffusion with ControlNet guidance. Mixing the resulting ratio and domain-controlled synthetic pairs with real data yields consistent improvements across multiple segmentation backbones, with gains concentrated on minority classes and improved Urban and Rural generalization, demonstrating controllable augmentation as a practical mechanism to mitigate long-tail bias in remote-sensing segmentation. Source codes, pretrained models, and synthetic datasets are available at \href{https://github.com/Buddhi19/SyntheticGen.git}{Github}
Artificial intelligence (AI) has shown promise in detecting and characterizing musculoskeletal diseases from radiographs. However, most existing models remain task-specific, annotation-dependent, and limited in generalizability across diseases and anatomical regions. Although a generalizable foundation model trained on large-scale musculoskeletal radiographs is clinically needed, publicly available datasets remain limited in size and lack sufficient diversity to enable training across a wide range of musculoskeletal conditions and anatomical sites. Here, we present SKELEX, a large-scale foundation model for musculoskeletal radiographs, trained using self-supervised learning on 1.2 million diverse, condition-rich images. The model was evaluated on 12 downstream diagnostic tasks and generally outperformed baselines in fracture detection, osteoarthritis grading, and bone tumor classification. Furthermore, SKELEX demonstrated zero-shot abnormality localization, producing error maps that identified pathologic regions without task-specific training. Building on this capability, we developed an interpretable, region-guided model for predicting bone tumors, which maintained robust performance on independent external datasets and was deployed as a publicly accessible web application. Overall, SKELEX provides a scalable, label-efficient, and generalizable AI framework for musculoskeletal imaging, establishing a foundation for both clinical translation and data-efficient research in musculoskeletal radiology.
Entropic optimal transport (EOT) in continuous spaces with quadratic cost is a classical tool for solving the domain translation problem. In practice, recent approaches optimize a weak dual EOT objective depending on a single potential, but doing so is computationally not efficient due to the intractable log-partition term. Existing methods typically resolve this obstacle in one of two ways: by significantly restricting the transport family to obtain closed-form normalization (via Gaussian-mixture parameterizations), or by using general neural parameterizations that require simulation-based training procedures. We propose Variational Entropic Optimal Transport (VarEOT), based on an exact variational reformulation of the log-partition $\log \mathbb{E}[\exp(\cdot)]$ as a tractable minimization over an auxiliary positive normalizer. This yields a differentiable learning objective optimized with stochastic gradients and avoids the necessity of MCMC simulations during the training. We provide theoretical guarantees, including finite-sample generalization bounds and approximation results under universal function approximation. Experiments on synthetic data and unpaired image-to-image translation demonstrate competitive or improved translation quality, while comparisons within the solvers that use the same weak dual EOT objective support the benefit of the proposed optimization principle.
Semantic segmentation of microscopy images is a critical task for high-throughput materials characterisation, yet its automation is severely constrained by the prohibitive cost, subjectivity, and scarcity of expert-annotated data. While physics-based simulations offer a scalable alternative to manual labelling, models trained on such data historically fail to generalise due to a significant domain gap, lacking the complex textures, noise patterns, and imaging artefacts inherent to experimental data. This paper introduces a novel framework for labour-free segmentation that successfully bridges this simulation-to-reality gap. Our pipeline leverages phase-field simulations to generate an abundant source of microstructural morphologies with perfect, intrinsically-derived ground-truth masks. We then employ a Cycle-Consistent Generative Adversarial Network (CycleGAN) for unpaired image-to-image translation, transforming the clean simulations into a large-scale dataset of high-fidelity, realistic SEM images. A U-Net model, trained exclusively on this synthetic data, demonstrated remarkable generalisation when deployed on unseen experimental images, achieving a mean Boundary F1-Score of 0.90 and an Intersection over Union (IOU) of 0.88. Comprehensive validation using t-SNE feature-space projection and Shannon entropy analysis confirms that our synthetic images are statistically and featurally indistinguishable from the real data manifold. By completely decoupling model training from manual annotation, our generative framework transforms a data-scarce problem into one of data abundance, providing a robust and fully automated solution to accelerate materials discovery and analysis.
Decentralized training is often regarded as inferior to centralized training because the consensus errors between workers are thought to undermine convergence and generalization, even with homogeneous data distributions. This work challenges this view by introducing decentralized SGD with Adaptive Consensus (DSGD-AC), which intentionally preserves non-vanishing consensus errors through a time-dependent scaling mechanism. We prove that these errors are not random noise but systematically align with the dominant Hessian subspace, acting as structured perturbations that guide optimization toward flatter minima. Across image classification and machine translation benchmarks, DSGD-AC consistently surpasses both standard DSGD and centralized SGD in test accuracy and solution flatness. Together, these results establish consensus errors as a useful implicit regularizer and open a new perspective on the design of decentralized learning algorithms.
The limited sample size and insufficient diversity of lung nodule CT datasets severely restrict the performance and generalization ability of detection models. Existing methods generate images with insufficient diversity and controllability, suffering from issues such as monotonous texture features and distorted anatomical structures. Therefore, we propose a two-stage generative adversarial network (TSGAN) to enhance the diversity and spatial controllability of synthetic data by decoupling the morphological structure and texture features of lung nodules. In the first stage, StyleGAN is used to generate semantic segmentation mask images, encoding lung nodules and tissue backgrounds to control the anatomical structure of lung nodule images; The second stage uses the DL-Pix2Pix model to translate the mask map into CT images, employing local importance attention to capture local features, while utilizing dynamic weight multi-head window attention to enhance the modeling capability of lung nodule texture and background. Compared to the original dataset, the accuracy improved by 4.6% and mAP by 4% on the LUNA16 dataset. Experimental results demonstrate that TSGAN can enhance the quality of synthetic images and the performance of detection models.